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Vulnerability Forecasting: theory and practice.

ÉIREANN LEVERETT∗, MATILDA RHODE∗, and ADAMWEDGBURY, Airbus, U.K.

It is possible to forecast the volume of CVEs released within a time frame with a given prediction interval. For example,
the number of CVEs published between now and a year from now can be forecast within 8% of the actual value. Diferent
predictive algorithms perform well at diferent lookahead values other than 365 days, such as monthly, quarterly, and half
year. It is also possible to estimate the proportions of that total volume belonging to speciic vendors, software, CVSS scores,
or vulnerability types. Some vendors and products can be predicted with accuracy, others with too much uncertainty to be
practically useful. This paper documents which vendors are amenable to being forecasted. Strategic patch management should
become much easier with these tools, and further uncertainty reductions can be built from the methodologies in this paper.

Additional Key Words and Phrases: cyberrisk, forecasting, prediction, CVE, vulnerabilities, vulnerability management

1 MOTIVATION

Most computer security vulnerability management problems are driven by reactivity to the disclosure of a
Common Vulnerability Enumeration (CVE) or the release of a patch. The cadence of patch release is usually
correlated with the release of CVEs, while the patch installation is dictated by business risk decisions and often
follows a diferent cadence. The release of CVEs is commonly viewed as stochastic, unpredictable, and diicult to
foresee before they emerge, and we seek to challenge that view throughout this paper.
It is possible to derive an expectation of exploit existence as a probabilistic posterior from CVE disclosure:

recent analysis has found that 80% of exploits are written before the CVE is published, by 23 days on average
[Chen et al. 2019][Suciu et al. 2021]. This resonates with the authors’ experience that a basic exploit often has
to be written to convince the company of the need for a CVE disclosure in the irst place. The only question is
whether such exploits are released more publicly in frameworks such as Metasploit, semi-publicly on platforms
such as exploitDB; or semi-privately in exploitkits, or completely private as a company that discovers it internally.
This exploit prediction work motivated us that CVEs too, might be quantitatively predicted.

We posit that vulnerability management could be much improved by predictive tools such as prediction of the
volume of CVEs being produced within discrete time spans (ideally, this would be user-speciied time spans). If
those forecasts are accurate (plus or minus some reasonably small conidence or prediction interval), then three
discrete things are accomplished:

(1) Security Engineering Logistics Provisioning The size of a patching team and resources can be better estimated

and budgeted for in advance. Essentially answering; ‘Is our team growing in pace with the volume of
vulnerabilities they must handle next year?’ This is not only a people management issue, but also one of
bandwidth, uptime availability, and change management. Many large companies spend millions on these
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problems; the vulnerability management industry itself was estimated at 12.5 billion USD in 2020 with a
compound annual growth rate (CAGR) of 4.5%1.

(2) Board-level cyber risk communication Our inability to forecast earthquakes leaves us exposed to risks we
cannot predict, whereas a 48-hour advance warning of hurricanes allows evacuation orders. Similarly here,
telling the Chief Finance Oicer that resources are required for the increased forecasted CVEs this year is
signiicantly diferent than inding out each day how many you must patch. What distinguishes this from
engineering and team management is the ability to amortize the risk over longer time periods by producing
projective cost-beneit scenarios, which can only be done with signiicant prediction window increases. A
probabilistic model of CVE forecasting can capture a way to quantitatively communicate how likely we are
to get 5 vulnerabilities above CVSS 7 in a single month. If you know the cost of patching and the cost of
exploitation, you can explain cyber risk to the board in language used for other types of quantitative risk.

(3) Software supply chain dependency Imagine you are deploying a medical device that will not be rexamined
by a doctor for many years. It needs to operate for 8 years and will only be patch-able twice within that
operational lifespan. This scenario may be extended to any estate with operationally deined maintenance
windows (I.E. many operational technology environments). You are conident that your own software
engineering teams have software engineering quality to meet your speciications, but what about the
operating system or libraries outside your control? The ability to forecast or even estimate the number
of patches per year would help very much in your operational planning, especially with bandwidth and
availability at such a premium forecasting expected vulnerabilities can help to predict the human resources
likely to be required for a given maintenance window. This is not to suggest you would prioritise the
system that has less security vulnerabilities, but rather the one that releases them in timely and consistent
manner. Especially if their patch release cycle synchronises to your diagnostic windows every 3 years.
In other words, the system that has less variability or uncertainty around how many patches would be
installed is preferred, not necessarily the one with less vulnerabilities.

(4) Cyber insurance The number of vulnerabilities released each year has a signiicant impact on cyber insurers
portfolios. In particular those that are network facing, in common CPEs, and have weaponised exploits.
The ability to forecast the volume of vulnerabilities is the irst step to putting a price on the impact of
those vulnerabilities across millions of businesses worldwide. Another possibility may emerge with using
predictions as a parametric trigger for insurance linked securities2.

(5) Equities processes The ability to decide if a vulnerability has value for ofensive or defensive purposes rests
in some sense of how scarce it is, how widespread it is, and how impactful. When evaluating a particular
vulnerability, one can use the quantitative background for forecasting to rate or score a vulnerability
according to these factors as a measure of scarcity. The other aspects of how often the vulnerability can be
found in the wild or how damaging it can be are not covered by the work in this paper, but the element of
scarcity is captured through a quantitative measure of the historical record.

Additionally, better forecasting begets better forecasting. Once we could predict the raw volume of CVEs in a
discrete time frame we found other uncertainty reductions for related forecasts began to follow more easily. In
other words, forecasting Firefox as a subset of all CVEs this year is easier than forecasting just from Firefox data
alone. In fact, the more sub-categories you can forecast the less of the total is left uncertain.

Many other cyber risk management problems become signiicantly easier because we have more time to plan
ahead and be less reactive; essentially shifting risk-based decision making to an earlier point in the timeline,
without impacting the quality of the decision itself. A projection of increased vulnerabilities over the next year
may help risk managers make the case for an increase in resources using quantitative data.

1https://www.marketsandmarkets.com/Market-Reports/security-vulnerability-management-market-204180861.html
2https://content.naic.org/sites/default/iles/capital-markets-primer-linked-securities.pdf
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A future application of CVE forecasting will also be found in the conditional probabilities; such as ‘If the next
CVE in this software is a memory corruption, what is the probability that exploit is developed within 3 months?’
or ‘If this software becomes deployed on 25% of internet-facing servers, what chance is there that an exploitable
vulnerability will be found in it?’. To achieve any of that, forecasting and risk analysis of the CVE data, public
disclosures, exploits, and operating systems, is necessary. Thus we believe that the work we have done reducing
the uncertainty of how many CVEs we will see in the near future is both well-motivated, and foundational to
future cyber risk questions.
This paper is organised as follows: the next section provides an overview of the contributions of this paper

followed by an overview of background literature in Section 3. Section 4 outlines the methodology used, section 5
introduces the dataset underlying the models and the results are presented in Section 7. Section 8 discusses some
limitations of the proposed approach and inally, Section 9 concludes the indings of the paper and discusses
potential applications.

2 KEY CONTRIBUTIONS

The key contributions of this work are summarised below:

(1) A publicly available leading indicator that has not been identiied in previous work, which improves
machine learning model accuracy.

(2) Two statistical models are applied to this problem which have not been documented in previous work
and produce accurate long-term predictions (Section ??), which outperform all other predictive models
tested for long-term (1 year) predictions. Each of these models relies on metadata, therefore having two
builds some security through redundancy in case one of the metadata models is changed.

(3) A set of models for predicting the number of vulnerabilities in both the short- and long-term, forecasting
within 8% of the true values for 1-year lookahead predictions on average. Previous work has focused on
short (1 to 3 months) or long term (1 or 2 years) time periods only, when patch managers are likely to want
to analyse both next month’s and next year’s predictions (Section ??). Our improvement of 8% percentage
error for yearly predictions improved on previous work which achieved 15% percentage error.

(4) A lexible framework to predict the number of total vulnerabilities or a speciic subset, using an
appropriate model for the task. Previous work typically looks at the number of vulnerabilities for either
speciic products or all CVEs, our model is appropriate for predicting all CVEs and some sub-types
(Section 7.5).

(5) This work acknowledges that we may want to predict CVEs in products that have never had a CVE
before. We document some of the challenges of predicting less commonly seen sub-types of vulnerabilities
accordingly (Section 7.5).

There are various diferent types of forecasting for security vulnerabilities. In this paper, the focus is primarily
on forecasting publicly disclosed vulnerabilities, that might impact a user of any software or irmware. Alternatively,
one can think of it as the rate of vulnerability publication (with respect to the NVD). The aim is to translate that
prediction and forecasting capability to optimise minimum resources for maximum risk reduction in vulnerability
management. However, we take a broader view in the literature below to overview other aspects of the research
because it also ofers insights.

3 BACKGROUND AND RELATED WORK

As an organising principle, there are three broad streams of vulnerability forecasting research.

(1) Existing network vulnerabilities Given previous network or single host vulnerability scans, forecast
how many previously known CVEs will be next found, and the density of vulnerabilities in diferent targets,
or more simply: the rate of change between host or network scans.

Digit. Threat. Res. Pract.
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(2) Future software vulnerabilities Given source code or a compiled binary, forecast how many vulnerabil-
ities there might be, where they are, or how much efort it might take to ind them.

(3) Future vulnerabilities: all types Given data on historical Common Vulnerability Enumerations (CVEs),
use machine learning to estimate the volume of published vulnerabilities in a given time frame, and/or
resource requirements to patch them. Given further information such as Common Vulnerability Scoring
System (CVSS) or knowing an exploit already exists, estimate diiculty to patch and/or risk reduction from
having done so.

In the literature review that follows the papers are grouped into these three categories.

3.1 Stream One: Forecasting the Vulnerability of Specific Computers or Networks

This branch of academic literature concerns itself with the prediction of the vulnerability of a given machine
or network. Sometimes it is even more speciic, such as the presence of a particular Common Vulnerability
Enumeration (CVE) on an Internet Protocol (IP) address or range of addresses e.g. [Venter and Elof 2004]. Or,
closely related to the CVE forecasting work in this paper, estimating the number of unpatched vulnerabilities
in an organisation based on the products in use and Bayesian inference [Chatzipoulidis et al. 2015] or fuzzy
sets [Aleksić et al. 2014]. This seems more applicable to ofensive security teams than defensive security teams,
though perhaps they could use it as a metric to optimise patching strategies. This may have a stronger application
where scanning is likely to miss results due to computers joining and leaving the network (university WiFi or
conferences) or being down for maintenance (OT Networks). In short, where the network’s graph of connections
could be considered dynamic in a temporal sense, this type of prediction may be very useful.

3.2 Stream Two: Pre-disclosure Vulnerability Volume Estimation

There is plenty of literature on predicting the number of undiscovered/undisclosed vulnerabilities in software.
Some of that literature focuses simply on the numbers [Petersson et al. 2004; Scott and Wohlin 2008; Vander Wiel
and Votta 1993], and other papers on how much efort it takes to ind them and what improvement may or may
not be achieved [Brady et al. 1999; Ozment and Schechter 2006; Rescorla 2005]. Some even make forays and eforts
into the value of predictability and forecasting [Alhazmi and Malaiya 2006]. The primary aim and application
of this type of research is the prevention of vulnerabilities during the software development lifecycle. In other
words, preventing the vulnerabilities from reaching a production system and getting assigned a CVE at all.

Another distinctive sub-ield of this research advocates becoming active; one can deliberately inject vulnerabil-
ities to be able to igure out the rate at which your security testers ind them [Schuckert 2016]. Alternatively, one
could use a security code review team to ind vulnerabilities, then not ix them, and see if the quality assurance
team inds them again to produce an estimation of how many have not been observed (Lincoln Index) [Geer
2015]. Such an index allows you to estimate the vulnerabilities remaining in a static codebase, which may or may
not have value depending on the velocity of your development team; if your development team is changing the
code too quickly, your ixes may not have much value as they inject more vulnerabilities at the same time.

3.3 Stream Three: Post-Disclosure Vulnerability and Exploit Forecasting

This is the stream of greatest relevance to this paper and explores the predictive power of estimating the number
of vulnerabilities that are publicly disclosed as CVEs.

The primary application of such research would be in managing patching teams, tools, and networks, exploring
patch strategies, and thinking about third party software interactions.

Digit. Threat. Res. Pract.
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Yasasin et al present an excellent systematisation of knowledge paper, that also demonstrates some promising
and practical empirical results for up to three-month lookaheads [Yasasin et al. 2020]3. The paper surveys the
literature much more broadly than we do here and provides many other points of departure for the interested
reader. It compares multiple time series forecasting models to predict the number of vulnerabilities for speciic
vendors. In particular, if the model under construction is meant to be a vendor or product-speciic one (I.E. all
Microsoft product disclosures, or Mozilla:Firefox disclosures), for which there may be many time periods in
which there are zero disclosed vulnerabilities. The authors caution against the use of relative metrics such as
percentages, and we didn’t use them in our own work below. The authors detail how to test the predictive power
of various time series models and report that Croston’s and ARIMA forecasting models tend to perform best but
do not select an overarching methodology for predicting the number of vulnerabilities attributed to any product.
Further, the work is limited to 1, 2 and 3-month forecasts "Since forecasting research has shown that long-term
forecasts are generally limited in their predictive accuracy", whereas here we chose to predict up to one year in
advance with no accuracy reduction to that of their 3-month predictions. Our work builds on this paper by using
a more robust testing methodology where strict date separation is enforced between the training and test set to
better-mimic real-world use (more details of this in Subsection 4.1).

Another inspiring paper revisits predicting product-speciic disclosures for Operating Systems [Pokhrel et al.
2017]. This one details both ARIMA and an approach using Artiicial Neural Networks (ANNs). The authors
predict numbers of CVEs for 12 single months, sums them, and compares to the yearly total for the test set, but
this is not the same as predicting the next year’s total CVEs since the model has information about what has
happened so far in a year (e.g in July) to predict the total number appearing between January and December.
These increasing forecast projections are decreasingly accurate, but might still be accurate enough for resource
planning. Here the authors observe strict date splitting, only testing on data from 2016 and training on data
up to the end of 2015. The conidence intervals are deined for the predictions, which also assist the astute risk
manager. However, we note that prediction intervals would have been a better choice to represent uncertainty
boundaries than conidence intervals in this respect as the former capture both the uncertainty around the mean
prediction and around the variance (thus the prediction interval is always wider than the conidence interval).
Last [Last 2016] predicts broader categories: all vulnerabilities, Browser CVEs, Operating System CVEs, and

Video Codec CVEs. This approach uses root mean squared percentage error (RMSPE) as a validation metric
(which the deep reader remembers was discouraged by [Yasasin et al. 2020] in the cases of zero-inlated time
series); and notes the occasional limited success of using software release dates alongside other data to aid in
the forecasting accuracy. This work predicts 12, 18 and 24-month windows, using strict date separation, with a
testing window from 2012 to 2015, achieving a median 15% RMSPE for global vulnerability predictions over 24
months, the work presented herein is able to signiicantly improve this metric for long-term global predictions.
Last’s work reveals an increasing accuracy as the forecast window increases from 12 to 24 months, this is a
result we have found to extend to short term predictions: the total number of vulnerabilities next year is easier to
predict than next month’s. However, this approach predicts the cumulative total CVEs for all time, such that the
percentage error metrics cannot be considered consistent over time, furthermore, the cumulative totals i.e. how
many CVEs there have been since 2001, are unlikely to be useful to patch managers.
Wang et al. [Wang et al. 2008] provide a method to optimise response to demand volumes. This provides a

solid foundation for optimising our response to the numbers of vulnerabilities a potential model may predict
but, more discussion is needed about the variability of response to difering numbers of patches. Useful as this
paper is, it is not speciic to our domain of publicly disclosed vulnerabilities, though it does detail an interesting

3The paper inishes: "To conclude, we hope that our study encourages academics to develop suitable forecasting methods for IT security
vulnerabilities which subsequently improve prediction accuracy. ", and we wish to acknowledge that their paper did exactly that in inspiring
the test methodologies and approaches we developed here.
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method for making unsupervised hybrid models by scaling horizontally with more processing power. In our own
research, we have not found processing power to be a limiting factor.
One paper notes that vulnerabilities follow market share [O’Donnell 2008], while another warns us to ‘mind

the denominator’ [Jardine 2018]. For our purposes that might mean using the full Common Platform Enumeration
(CPE) dictionary to look at probabilities for vulnerabilities, instead of only vulnerability databases. Indeed we
discuss later in the paper the challenge of predicting CVEs for products that have never appeared in the CVE List
before, and that is where using the CPE might help in some cases.

It is important to scour amongst hacker literature as well as academic papers. Many academics hide their light
under a bushel and present very practical results at hacker conferences such as BlackHat or Chaos Communication
Congress. Allodi, for example, has captured a very important piece of information security risk reduction
measurement in this presentation of the perils of CVSS as a risk quantiication4. The gist of it is that most
vulnerabilities don’t have exploits, and don’t get exploited. Improving the speciicity (false positive for exploited
vulnerabilities) of our work would save us a lot of patching efort. Allodi has also published a related paper on
the distribution of exploitation per CVE[Allodi 2015].
An intellectual ofspring of Allodi’s work was performed by Cyentia Institute and Kenna Security5. Here

they look at a wider dataset of exploited machines in IDS traic, trying to learn from what gets exploited and
extrapolating towards better patching. That work has now become a special interest group at FIRST.org for
Exploit Prediction and Scoring Systems (EPSS)6.

Previous work into vulnerability forecasting has demonstrated that it is possible to predict the numbers of all
expected CVEs or subsets of CVE categories for a few months or a couple of years. However previous literature
has failed to unify a framework that is capable of spanning both. In this paper, we present a model to predict
both short- and long-term numbers of vulnerabilities using publicly available data from MITRE that has not
previously been written about for this purpose.

This stream also has applications to supply chain management and passive vulnerability scanning. It may not
be intuitive that forecasting is useful to risk management even when you have no intention of patching as a risk
treatment. To illustrate that, consider that CVE forecasting could answer questions of the form: A submarine
is launched with vendor X’s product; knowing it can not be patched for a year due to cost/battery/bandwidth
reasons, how many vulnerabilities can be expected to emerge in Vendor X’s product within that year of service?
Another way of looking at the same problem might be: Estimate how often I need maintenance downtime to
keep Vendor X’s products patched above CVSS 7 this year. With this in mind, what data can we use for prediction
and forecasting, to move towards answering such questions?

4 METHODOLOGY

This paper seeks to predict the number of CVEs as a whole as well as sub-types of CVEs (e.g. particular products,
CVSS severity, attack vector) across diferent time-spans (1 month, 3 months, 6 months, 9 months, and one year).
It may be that diferent models are better suited than others to predict certain sub-types over certain periods of
time-frames. Predictive modelling may perform well in laboratory tests but over time, underlying changes in the
distribution of data known as concept drift may make forecasts less accurate and reliable. Moreover, the best
model for predicting may change over time.
This paper proposes a methodology, see Figure 1 to solve both of these problems simultaneously in a robust

way, where robustness refers to the ability to handle changes in the underlying distribution of data.

4https://media.blackhat.com/us-13/US-13-Allodi-HOW-CVSS-is-DOSsing-Your-Patching-Policy-Slides.pdf
5https://i.blackhat.com/USA-19/Thursday/us-19-Roytman-Predictive-Vulnerability-Scoring-System-wp.pdf
6https://www.irst.org/epss/
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Fig. 1. High level overview of prediction methodology

The irst problem is how to handle many diferent distributions of data: subtype vs subtype, 1-month predictions
vs 1-year, 1-year prediction in 2015 vs 1-year prediction today. This issue is tackled by allowing multiple diferent
modelling strategies to compete and selecting the best one. The ‘best one’ is the model which scores the lowest
prediction interval on a recent validation set. Prediction intervals, like conidence intervals, assert likelihood
bounds around a prediction being correct. Unlike conidence intervals, prediction intervals must also account for
the variance over time in a forecast. Let σ be an unbiased estimate of of the standard deviation calculated by
√

∑

(Y−Ŷ )2

N−2 , and z a conidence interval z-score e.g. 1.96 for 95% conidence interval, then the prediction interval

is Ŷ ± z ∗ σ for a validation set. In essence, this means that the best model is the one that has seen the lowest
average deviation from the validation data. It is possible to swap this metric for another, as is indeed tested below
in experiments, this is to allow lexibility to the user and because it is perfectly possible to conigure the model as
such.

The second problem is robustness over time: what if the underlying structure becomes efectively unpredictable,
how will the user know not to rely on even the ‘best model’. This is also tackled by using prediction intervals.
Prediction intervals act as a guide to the user as to how well the model is performing. If the model predicts 2,000
vulnerabilities with a 90% prediction interval of ±1800, the user should be able to judge whether or not the model
is providing useful insights (if there is only capacity to patch or manage 200 vulnerabilities then it may in fact be
useful!).
To critique our own approach the inherent weakness in this methodology is the reliance on recent past

performance i.e. performance on a validation set. If there is a signiicant change in periodicity, volume, or variance
starting today, the model is unlikely to be able to capture it unless it has been through a similar change during
the validation period. Despite this drawback, we still believe that this methodology improves upon previous
research by creating a framework to handle a variety of input data and changing input data.

4.1 Model Evaluation

This section presents the evaluation methodology used in this paper: retrocasting. Retrocasting is used for
evaluating model accuracy and underlies the goal of this paper which is forecasting. Forecasting is used for
resource management and planning, i.e. real-world use. Retrocasting iteratively pretends we are somewhere in
the past trying to predict the number of CVEs in the future, this rolling window approach allows us to approximate
the performance of our model when it is deployed. Retrocasting predicts the number of CVEs seen in a ixed
period of time (e.g. one month) for multiple łend" dates (end of the lookahead window) in the test set, here the
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end dates are staggered at 10-day intervals between Sept. 2018 and Sept. 2020. Retrocasting ixes the lookahead
(the window of time we are trying to predict) but changes the end date and use the average accuracy metrics
as an indicator of future performance. Empirically we veriied that it is possible to be more accurate on some
longer time windows, than on some shorter ones. The retrocasting window used throughout this paper are 24
measurements taken between January 2019 and January 2021. Forecasting, by contrast, uses a ixed window.
This is ixed from date from which we are trying to predict and changes the lookahead to give estimates for
diferent time periods into the future. The purpose of forecasting is that for use in resource management, patch
maintenance teams may want a short-to-long-term view of the number of vulnerabilities being seen. Previous
work has indicated that a range of machine learning and statistical paradigms, some capable of time series
analysis are superior to others in their forecasting capabilities. For comparison with prior work and to ensure
that the most accurate model is being used for each forecast context (lookahead and CVE sub-group) a number of
evaluation metrics are collected to determine the best model.

5 DATA USED

As with previous work in vulnerability forecasting [Last 2016; Pokhrel et al. 2017; Yasasin et al. 2020], this
research uses the US government’s National Vulnerabilities Database (NVD) with a goal to predict the number of
vulnerabilities (matching certain criteria) that will be published to this database within a given future time span
(lookahead window). The NVD data itself can be used as a signal for this prediction but is more efective when
augmented by additional data from MITRE; the organisation that maintains and publishes the CVE-list, which
feeds the NVD.

During data cleanup and preparation, we performed the standard times series and forecasting analysis (Fig 2,
irst-order diferencing (Fig 3), and detrending (Fig 4), to make a stationary time series. On examination, it appeared
it was unlikely prediction could succeed with these methods beyond 3 months, where the partial auto-correlation
falls below a noise loor of the variance (Fig 5). However, once we found the MVUE (Section 6.2) and Little’s Law
(Section 6.3) approaches it became possible to extend practical forecasting (+/- 5 percent uncertainty) beyond this
natural limit to a year ahead.

This alone is a signiicant inding, but we have also shown that the data support strong prediction intervals at
diferent timescales, and shown that some products are ripe for forecasting, while others have too little data or
don’t decompose well under traditional time series analysis.

5.1 NVD

The NVD maintains detailed information about CVEs including but not limited to:

(1) date published
(2) the organisation reporting the CVE (known as a CVE Numbering Authority or CNA)
(3) a text description
(4) Strings indicating speciic entities impacted by the CVE (Known as Common Platform Enumerations or

CPE strings)

CVEs are identiied by a CVE-ID string in the format: CVE-YEAR-XXXX. During this research, it became
evident that the YEAR in the CVE-ID did not match the publication year in all instances. This is because the
CVE-ID relects the year in which the vulnerability was assigned rather than published. Figure 6 illustrates
the disparity between publication year and CVE-ID year, some early CVEs were added retrospectively even
assigned a CVE year later than they are published but this is an anomalous attribute of the early entries in the
database. Every CVE is assigned prior to being published, sometimes years in advance, sometimes as little as an
hour. The XXXX part of the ID corresponds to a serial number thus allowing us to infer that on publication of
CVE-2020-0100 there are unpublished CVE IDs reserved for CVE-2020-0001 to CVE-2020-0099 even if they have
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Fig. 2. Seasonality analysis of vulnerability publication volumes

not been published7. Thus we are able to ind that N CVEs are in the pipeline, which improves the accuracy of
predictive models. This latent data is the foundation of one of the models presented in this paper in 6.2. In short,
CVEs are ordered on arrival, but released stochastically according to progress internal to MITRE. That ordering
allowed us an initial insight into how long they take to process, later supplanted by the CVE list we discuss below.

5.2 MITRE

Every CVE-ID is assigned by MITRE or one of their approved CNAs8. The speciic assigned dates are published
by MITRE 9, which gives much better granularity of the assigned date than using the CVE-IDs. MITRE provides
the assigned date whilst the NVD catalogues the date published. Research from Chen (Palo Alto Networks) [Chen
2020] asserts that 80% of CVEs have a publicly available exploit on average 23 days before the CVE is published.
Combining NVD and MITRE data reveals that the median lag between the assigned date and publication date

7In practice these can be more digits such as CVE-2020-XXXXX or CVE-2020-XXXXXX
8144 organisations as of 5th November 2020: https://cve.mitre.org/cve/cna.html
9Available to download: https://cve.mitre.org/data/downloads/index.html
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Fig. 3. 12 rolling month first order diferencing.

Fig. 4. 12 rolling month first order diferencing minus trend.

is 51 days (see Table 1). These statistics underscore the possibility and usefulness of being able to predict the
publication of CVEs at least one month in advance.

5.3 Challenges

Examining the raw data highlights some of the challenges in predicting CVE numbers. Four key challenges are
briely described below:
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Fig. 5. ACF-PACF

Fig. 6. Heatmap of CVE Year against Publication Year over the historical record.

Short-term variance Due to the idiosyncratic policies and practices of both CNAs and MITRE, some of which
are common to all non-automated processes, sometimes an abnormally large number of CVEs are published
in a single day. Figure 7) shows the normalised variance of weekly, monthly, quarterly and yearly predictions.
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mean 162 days 11:50:28
standard deviation 390 days 06:14:18
min 0 days 01:02:00
1st quartile 1 days 05:17:00
median 51 days 15:57:00
3rd quartile 160 days 20:29:00
max 6263 days 15:15:00

Table 1. Summary of lags between database entry and publication of CVEs

Fig. 7. Weekly, monthly, quarterly and annual total vulnerabilities January 2017 to October 2020 normalised between 0 and 1
shows greater variance as for shorter time windows.

Although there is a dramatic increase in the yearly values, in accordance with the central limit theorem (e.g.
[Heyde 2006]), the variance decreases with the number of observations, which can make it easier to predict with
reasonable accuracy, which is what we have found in our empirical results.

New products Some products may see a sudden, unprecedented increase in the number of CVEs. This may be
because the product is new, because its market share has increased [O’Donnell 2008], or due to some other factor
that is exogenous to NVD or MITRE data (Such as the automation of vulnerability inding). It is challenging for
the model to predict something entirely new which has either not previously existed or has been at zero for a
long time. This is a particular challenge for long-term CVE predictions.

Structural changes in CVE publication patterns Though the variance is lower for annual total CVE counts,
there are clear step-changes in the numbers of CVEs being published (see Figure 8) either side of 2005 and of
2017 and to a lesser degree in 2014. This is a challenge for models using historic data to predict new vulnerability
totals, one which is explored using data iltering in the experiments reported in this paper.

Assigned date is not a suicient leading indicator for long term prediction. Whilst the assigned date will
indicate how many CVEs are in the pipeline, this data is not suicient to predict the number of vulnerabilities
that will be published within a given forecast window (lookahead). This is because (1) some CVEs are rejected by

Digit. Threat. Res. Pract.



Vulnerability Forecasting: theory and practice. • 1:13

Fig. 8. Annual total CVEs published 2002 to 2020

MITRE (2) some CVE-IDs are reserved by CNAs speculatively but never populated (3) even if we know how many
are in the pipeline, we do not know how many more will be assigned and published within the forecast window.

6 PREDICTIVE MODELS

As described above, a suite of models is trialled for forecasting. These model include both statistical models and
machine learning models. The line between a statistical and machine learning model is not sharply deined. Here,
we distinguish machine learning and non-machine learning models as those models capable of learning from
multiple input features and those which only take the historical data of the target values as inputs.

There are several types of model tested:

6.1 Baseline models

A forecasting model is of no use if it cannot beat the most simple non-time series forecasting methods. The two
baselines used here are:

(1) Previous value - take the previous year/month/week total to predict this year/month/week
(2) Moving average - take the mean over the last few years/months/weeks to predict next year/month/week

Since this is a forecasting problem, time series and forecasting models are expected to perform the best. The
forecasting models used here are:

(3) Exponential smoothing - this statistical method is similar to moving average but previous values are not
weighted equally, instead an exponentially decreasing weight is assigned to previous predictions [Holt
2004]. Exponential smoothing is only capable of handling univariate data.

(4) ARIMA - Auto-Regressive Integrated Moving Average (ARIMA) model (formalised in by [Box et al. 2015]
Box, Jenkins, Reinsel and Ljung), ARIMA is capable of handling some types of non-stationarity in time
series data. ARIMA has previously been used for vulnerability forecasting with success by [Yasasin et al.
2020] and [Pokhrel et al. 2017] for 1, 2 and 3-month predictions.

(5) Croston’s method [Croston 1972], as mentioned above, attempts to rectify poor forecasts for data, which
has zero values for some measurements. Croston’s method has also been used by [Yasasin et al. 2020].

(6) Long-Short-Term Memory Recurrent Neural Network is a time-series machine learning model which
adjusts weights through a series of layers of interconnected neurons and acts as a general function
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approximator. The recurrent neural network is a time-series neural network, the LSTM variant [Hochreiter
and Schmidhuber 1997] was developed to handle exponentially increasing and decreasing weights during
training over long time sequences.

Machine learning models can be used to learn from data, in this instance, historic vulnerability data may be
useful to predict the upcoming number of vulnerabilities, but we do not know the mathematical relationship
between the data. Machine learning may uncover underlying relationships through exposure to data. The LSTM-
RNN is a time series machine learning model (listed above) but there are some non-time series models which
can be made to work with time-series data by feeding in historical data as individual inputs e.g. this year’s total
together with last year’s total vulnerability count. The disadvantage here is that the model does not know the
temporal relationship between the data but we test this method, in any case, considering the top-3 most commonly
cited algorithms discussed by the winners on the data science competition platform Kaggle [Goldbloom 2015]:

(7) Random Forests [Breiman 2001] are an ensemble method which, once trained, groups together multiple
decision trees and takes a majority vote.

(8) Gradient Boosted Machines [Friedman 2001] also rely on decision trees but trees are added during training
in order to make up for the shortcomings of those trees already in the ensemble i.e. trees are combined
during training rather than at the end.

(9) Discussed above Neural Networks have been mentioned above and a number of lavours can be used
including LSTM-RNNs, which is the type that will be used here.

Further to these models, we use two additional statistical models which exploit metadata from the CVE database,
namely the CVE-ID number and the reservation of CVEs prior to publishing. We refer to these models as: ’A
yearly MVUE’ and ‘Little’s law exit rate’.

(10) ‘A yearly MVUE’ - this approach uses a minimum variance unbiased estimator which has been used for
serial-number analysis to estimate the expected maximum serial number given a set of observations. The
CVE-ID numbers appear to be assigned serially each year, hence a yearly MVUE

(11) ‘Little’s Law exit rate’ - is rooted in Little’s law [Little and Graves 2008] which is a queuing theory equation
for estimating the number of items in a queue from the average waiting time and average arrival rate to
the queue. These two data are available thanks to the recording of CVE reservations by MITRE, but in this
case, we are interested in how many items will be dequeued (published) rather than the number of items in
the queue; hence Little’s Law exit rate.

Since these two features are new, we will explain them in further detail.

6.2 A Yearly MVUE for CVEs

There is a long history of serial number prediction in academic literature[Ruggles and Brodie 1947]. The Minimum
Variance Unbiased Estimator (MVUE) used in tank production prediction problems of the Second World War is
detailed within [Johnson 1994]. We reproduce the original equation here:

ŷ = M +
M

Obs
− 1 (1)

Where ŷ is the predicted number of CVEs associated with a particular year (CVE-2020-XXXX for example),M
is the maximum CVE published, and Obs is the number of CVEs published (observed) that conform to the string
CVE-2020-XXXX. The CVE-ID numbers are tied to a CVE-YEAR.

The year portion is not used to indicate when the vulnerability was discovered, but only when it was
made public or assigned [MITRE 2020] but we are interested in when a CVE gets published. Therefore
the MVUE gives the estimated number of CVEs for a given CVE-YEAR and this is then combined
with the likelihood that a CVE will be published in the time period that we are interested in where P
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is a vector of probabilities p0,p1, ...pT that a CVE will be published for each previous CVE-YEAR and
q is the fraction of a year the time period being predicted e.g. 6 months gives q=0.5. The number of
observed CVEs is subtracted from the estimate since each CVE can only be published once. There
are some anomalous CVE-IDs that have a huge number and do not appear to be sequential with the
other numbers, any CVE-IDs above 1,000,000 were removed.
The yearly MVUE for CVEs is therefore:

ŷT = q

T−1
∑

t=0

pt (Mt +

Mt

Obst
− 1) (2)

The probability vector P is calculated from cumulative historic data and can be seen as the likelihood
that a CVE published today uses a year-ID equal to this calendar year, equal to the previous calendar
year etc.

6.3 Litle’s Law Exit Rate

John Little’s theorem, known as Little’s Law [Little and Graves 2008][Little 2011], is used in queuing
theory to estimate the size of a servicing queue, L from just two statistical metrics: the arrival rate
into the queue, λ, and the mean service time,W such that:

L = λW (3)

Before a CVE is published, it is entered into the MITRE database, thus the diference between this
timestamp and the publication timestamp of NVD can be seen as the service time10. However, unlike
the general use of Little’s law, we are not interested in how many vulnerabilities are being serviced
but instead how many are going to have been serviced in a given window. For this, we adopt a
variation of Little’s Law to estimate the exit rate from the queue ŷ using the probability p that the
service time is within the window of interest p (W ≤ window ). λ gives the arrival rate to the queue
during the window, which we use as the baseline for the exit rate, added to this is the number of
CVEs in the queue from the last period, multiplied by the inverse of the exit rate to capture those
which were not published within the previous window. For example, the monthly arrival rate at the
start of May was 1000 and was 800 in April and the probability of being published within 1 month of
being assigned is 0.25, then the predicted number to be published by the end of May is 1000 + 800 *
(1 - 0.25) = 1600 since 25% of the 800 were probably published in April.

ŷ = λ + N ∗ (1 − p (W ≤ window )) (4)

The summary statistics for the entire NVD database (see Table 1 above) shows that at the time of

writing the median service time is 51 days and 16 hours but the mean is 162 days implying that the

data is skewed by some large outlier values, as shown by the max of 6,632 days. Some CVEs created

shortly after the CVE programme was instigated in 2001 are still being published today and these

CVEs can skew both the estimation of service time and the N constant since these CVEs are not

necessarily being actively processed. For this reason, we set a "lookback" limit on the Little’s Law

exit rate model such that the p (W ≤ window ) is calculated within a pre-speciied window and N

only represents items added to the queue within the previous window period e.g. if we are predicting

how many CVEs will come out next year, we just look at how many are still left in the queue from

10In fact, our initial coding of this did not use MITRE’s assigned date. Instead, it estimated the exit rate from historical data on a yearly scale.

Mitre’s assigned date merely adds the ability to scale this down to monthly or daily granularity.
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last year and do not include the forgotten souls from the early 2000s. Succinctly, by reducing the
memory of Little’s Law we are less sensitive to history, and more sensitive to changes in the rates.
Little’s law was recently applied to CVE production times by other researchers [Miranda et al. 2021],
but they did not make use of it as a predictor or measure its predictive power against other forecasting
models as we have done here. Our work can be seen as independent conirmation of the applicability
of Little’s Law to the problem space.

6.4 Model configuration

Of the 11 models tested, some require coniguration which can have a signiicant impact on perfor-
mance, moreover, the data used may inluence the accuracy of the model. To test all variations for
one lookahead period took around 20 minutes, which could be run nightly. These experiments used
a desktop PC with 64GB RAM, a quad-core 3GHz CPU and an Nvidia GTX 1080 GPU to training the
neural network (LSTM) model. We elaborate the variations below:

6.5 Hyperparameters

For each of these models, there are a number of hyperparameters to be selected. The smallest
hyperparameter search space is for the ARIMA model, which has 507 possible hyperparameter
conigurations. A random search of 10 conigurations is used instead of a grid search since previous
work has found the former method can produce better results [Bergstra and Bengio 2012]. The best
hyperparameter coniguration is the one with the smallest prediction interval for the validation set.
Future work could increase the number of hyperparameter conigurations tested, but this requires
additional computational resources.

6.6 Input Features

Some models, such as exponential smoothing, can only take a single feature as input. Other models
can take multiple inputs; for these models, the historic counts for the time period of interest are
provided as well as the counts per week, month, quarter and year. The data required to calculate
the yearly MVUE and Little’s Law exit rate are also provided to the models: max CVE-ID, number
of CVEs observed this year, the proportion of the year observed so far, CVE arrival rate, number
in queue and probability that service time is less than lookahead. Models taking multiple inputs,
therefore, use 12 features.

6.7 Lookback

For the time-series models and the machine learning models using ‘lattened’ data, the models may
perform better or worse with diferent lookback windows e.g. the rolling mean model could take
the mean over the last 2 or last 5 periods. The lookback length can be considered an additional
hyperparameter, here we test a lookback of 2 times, 4 times and 8 times the lookahead window i.e.
2 years, 4 years or 8 years for a 1-year prediction; 6 months, 12 months, 24 months for a 3-month
prediction.

6.8 Historic data exposure

Some models do not use lookbacks but instead, use the entire historic dataset e.g. ARIMA. There
are large shifts in annual igures around 2005, 2014, and 2017 (see Fig. 8 above), the models are also
tested using data from only after 2017 dates in case it aids performance by omitting obsolete data
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Model # features # hyperparamters hyperparameter
coniguration

lookback

Exponential
smoothing

1 1 (smoothing factor) optimise on
training set

forever

Croston’s
method

1 2 (scalarisation factor and
smoothing factor)

optimise on
training set

forever

ARIMA 1 3 (autoregressive, diferenc-
ing, and moving average pa-
rameters)

random
search

forever /
limited by
autogre-
gressive
parameter

LSTM 12*T 4 (hidden neurons, depth,

bidirectional, epochs)

random

search

limited

(time

series)

RF 12*T 5 (number of estimators, cri-

terion, min. samples split,

min. samples leaf, bootstrap)

random

search

limited

(lattened)

GBM 12*T 7 (number of estimators, cri-

terion, loss, min. samples

split, min. samples leaf, sub-

sample, learning rate)

random

search

limited

(lattened)

Yearly MVUE 3 - - forever

Little’s Law

Exit Rate

2 - - limited

Table 2. Features used, hyperparameter choices and data lookback window

trends. Those machine learning models using lookbacks are also impacted by this historic data as it

will either be included or omitted from the training set.

6.9 Model configuration details

In summary, 11 models are trained, 10 of these have conigurable hyperparameters of which 10

subsets are tested across 3 diferent lookbacks.

Table 2 gives an overview of the algorithms used, the number of features, the possible hyperparameters

and the lookback data used to it (or train) the models. Where the number of features is 1, the only

feature is the historic data for the lookahead period e.g. if lookahead is 30 days, it’s the historic

30-day totals. Where the number of features is 12*T, this means the model is using the 12 features

described above but for a certain lookback period, T. For non-time series models, this is lattened

into a 1-dimensional vector, for time series model a 2-dimensional matrix of size 12*T is used.

Exponential smoothing: The only hyperparameter for this model is the smoothing parameter, the

SimpleExpSmoothing module from the StatsModels python library [Seabold and Perktold 2010] was

used, which has in-built automatic parameter optimisation on the training set.

Croston’s method:Mohammadi’s python implementation [Mohammadi 2020] which also optimises

parameters on the training set
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ARIMA: for the ARIMA model, the autoregressive (AR), diferencing (I) and moving average (MA)
parameters may be estimated by a number of diferent methods. Due to the multiple datasets that
this model is trying to it (number of months, sub-types of CVE) we adopt a random search approach
allowing values between 0 and 12 for the AR and MA parameters and 0, 1 or 2 for the diferencing
parameters since we do not typically observe time series of degree 3 or more. ARIMA can take
exogenous variables so could take additional features, however, this requires the forecast value of said
exogenous variables which introduces additional instability to the model so was omitted. Sometimes
the ARIMA model cannot converge with the random parameters provided in which case another set
of parameters were selected until 50 models and/or all possible conigurations have been attempted.
This was also implemented using the StatsModels python library [Seabold and Perktold 2010].
LSTM the LSTM was implemented using Keras [Chollet et al. 2015] python library. For neural
networks, the hyperparameters can have a signiicant impact on the success of the model and a
random search was used to ind good hyperparameters.
RF and GBM for the random forests and gradient boosting machines, the time series data used by
the LSTM is lattened. This allows these models to have some temporal perspective but they do not
know which parameters are the same from a diferent time period nor the order of these variables
and a random search was used to ind good hyperparameters. These models were implemented using
the Scikit-learn python library [Pedregosa et al. 2011] and further details on the hyperparameters
can be found in the Scikit-learn documentation.

7 EXPERIMENTAL RESULTS

This section reports the results of forecasting diferent groups of CVEs over various time spans. The
95% prediction interval is used to select the best model, calculated over the 25 steps prior to the
forecast date. We also present retrocasts whereby multiple historic forecasts are plotted on a single
graph against the true number of CVEs that were observed.

7.1 Historic data, Lookback and Features

Time-series forecasting models such as ARIMA have the historical lookback build into their parame-
ters, the number of steps to look into the past and how much history to consider can be speciied
when building the model. For the machine learning models and for the Yearly MVUE and Little’s
Law Exit Rate features the amount of history considered impacts the training data for the models
and the number of samples in the ‘queue’ respectively.
Therefore we explored using diferent amounts of historic data: since 2001 when NVD records begin,
and since 2017, the most recent step-change to in annual CVE volume level (see Figure 8 above).
The lookback determines the data history used per prediction. Here we tested 1 x lookahead, 2 x
lookahead and 4 x lookahead i.e. 12, 24 or 48 months of history to predict 12 months ahead.
Yearly MVUE and Little’s law provided good estimations, particularly of yearly CVE volumes. For
this reason, the features generated for the Yearly MVUE and Little’s Law Exit Rate models are also
supplied to the machine learning models. Here we show how these two developed models performed
against machine learning models with and without the derived features.
Table 3 shows the comparative performance on yearly predictions of CVE numbers when varying the
amount of historic data used, the lookback window and the features seen by the models. The dummy
model benchmark is the lowest MAE achieved by a dummy model (previous value or rolling mean)
over the prediction period - this is 1618, achieved by the rolling mean using a 24-month lookback,
the average number of CVEs across the retrocast (Jan 2019 to Dec 2020) is 17,271. Only two models
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Historic data
since

Lookback
window
(months)

Features Lookahead
(months)

Algorithm MAE

- - count 12 previous 1809
- 12 count 12 rolling 1936
- 24 count 12 rolling 1847
- 48 count 12 rolling 2734
2001 - count 12 Exponential 1809
2017 - count 12 Exponential 1790*

2001 - count 12 Croston’s 1812

2017 - count 12 Croston’s 1798*

2001 - count 12 ARIMA 1772*

2017 - count 12 ARIMA 5002

2001 12 count +MVUE + Little’s Law 12 LSTM 1402*

2001 24 count +MVUE + Little’s Law 12 LSTM 1430*

2001 48 count +MVUE + Little’s Law 12 LSTM 1515*

2017 12 count +MVUE + Little’s Law 12 LSTM 5084

2017 24 count 12 LSTM 5913

2017 24 count +MVUE + Little’s Law 12 LSTM 4518

2017 48 count +MVUE + Little’s Law 12 LSTM 5374

2001 12 count +MVUE + Little’s Law 12 RF 4136

2001 24 count +MVUE + Little’s Law 12 RF 5845

2001 48 count +MVUE + Little’s Law 12 RF 4667

2001 24 count +MVUE + Little’s Law 12 RF 5845

2017 12 count +MVUE + Little’s Law 12 RF 2377

2017 24 count 12 RF 1792*

2017 24 count +MVUE + Little’s Law 12 RF 2313

2017 48 count +MVUE + Little’s Law 12 RF 2486

2001 12 count +MVUE + Little’s Law 12 GBM 2850

2001 24 count +MVUE + Little’s Law 12 GBM 3352

2001 48 count +MVUE + Little’s Law 12 GBM 3104

2001 24 count +MVUE + Little’s Law 12 GBM 3325

2017 12 count +MVUE + Little’s Law 12 GBM 1985

2017 24 count 12 GBM 1736*

2017 24 count +MVUE + Little’s Law 12 GBM 1651*

2017 48 count +MVUE + Little’s Law 12 GBM 1959

- - MVUE 12 Yearly MVUE 1490*

- - Little’s Law 12 Little’s Law

Exit Rate

1267*

Table 3. 12 month predictions for Jan 2019 to Dec 2020 mean absolute error (MAE) diferent cutof dates, lookback periods
and feature sets. **best dummy model MAE, *models which improve on this benchmark.

beat the dummy model: LSTM using all historic data, all features and a 24-month lookback window

(MAE=1430) and the Yearly MVUE model (MAE=1286).
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Interestingly, the RF and GBM, which provide competitive performance with the dummy model do
not perform as well with more historic data, instead, they are more accurate with data since 2017,
the opposite is true for the LSTM. This may be due to the fact that the LSTM can process time-series
data whereas the other two cannot.
The Little’s Law model is the best performing model followed by the LSTM then the Yearly MVUE
model, but the Little’s Law model and Yearly MVUE cannot be used for subsets of CVEs since we do
not know the details of these CVEs in advance therefore cannot determine which metrics to extract
for subsets of forecasted general CVEs. This is the reason we integrate the features from these models
to machine learning models, which in some cases are improved by the inclusion of these features
(see LSTM MAE above).

7.2 Model selection methodology

Table 3 reports the accuracy metrics on the retrocast test set and would enable us to pick the best
model with the beneit of hindsight. Looking at predictions for individual points in time, however,
it becomes clear that the ‘best model’ would change if the retrocast window changed. Since we do
not know which model will be best for a given prediction, can we devise a methodology in order
to automatically select this model? The dual beneit of this approach is that if it works for diferent
time periods, it could also work for diferent data feeds such as other lookaheads or subgroups of
CVEs e.g. individual products.
In order to choose a model, each prediction uses past performance on a held-out validation set to
select the algorithm with the highest performance, we refer to this henceforth as the combined

model. The training, validation and test sets are irst split strictly by date such that the validation set
data occurs after the training set data. If the validation set were randomly extracted from dates within
the training set (even if excluded from the training set) this could give a less-accurate representation
of model performance on the test set due to information leakage. The validation set comprised the
window up to most recent 6th, 5th, 4th, 3rd, and 2nd date for which the true value is available,
whereas the test set comprises the window leading to the most recent date (the test date). For each
new prediction the training, validation and test data shifts, with new models trained (or calculated in
the case of the statistical models).
The performance is determined by a metric; a patch manager could conigure the performance metric
on this validation set to use mean absolute error, prediction intervals or some other metric. Here we
use the number of times that the model gives a ‘good’ prediction, this is so that one terrible prediction
on the validation set does not rule the model out. ‘good’ here means within 10% of the validation
predictions. If there is a tie, this is broken using the 95% conidence prediction interval.
Figure 9 illustrates themodel selection process. The top graph shows the competingmodels predictions
on the 25 previous steps; only 5 of the hyperparameter random searches are shown here for each
algorithm to make the graph more readable. The middle graph shows the best-performing model for
each algorithm i.e. each algorithm which required hyperparameter searching is represented by the
one with the lowest 95% prediction interval. Finally, the bottom graph shows the historic predictions
intervals (70%, 80% and 95%) for the best overall model and the future prediction relative to the true
number observed; since this was in the past we can plot the true value.
The model selected for this example (to predict the total number of CVEs that will appear between 01
January 2018 and 01 January 2019) is an ARIMA model which predicts 15,809 and the actual number
observed was 16,347.
The model selection methodology is outlined graphically in Figure 9.
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Fig. 9. Model selection process to predict the total number of CVEs that will appear between 01 January 2018 and 01 January
2019. Black crosses indicate the true value observed with a validation set (most recent 5 predictions) on the let hand side
and the future prediction on the right hand side (12 months from January 2018 i.e. January 2019). The top graph shows all
predictions, the second graph shows the best of all models, botom graph shows best model predictions.

7.3 Predicting diferent time periods

Previous work has tended to look at predictions several months ahead. Since budgets and resources
are often allocated annually rather than quarterly we have also looked at longer-term predictions up
to 12 months in advance.
The following table reports the predicted and actual values for each month in 2020 predicting monthly,
quarterly, 6-monthly and yearly number of CVEs, i.e. the prediction for 01 January 2020 was made
from the data available on 01 January 2019. Only the best algorithm (known with the beneit of
hindsight) is reported, together with the previous value, rolling mean and combined model approach.
The combined model looks at model scores within 10% of the true value. If there is a tie, a prediction
interval at the 95% conidence level is used as a tie-breaker. Although we can look at the best model
across the retrocast in the previous section - how could we choose this model over the others? Yearly
MVUE scores best at predicting annual across the testing period but it does not perform well in 2018.
The combined model outperforms the dummy models (previous value and rolling mean) for 12 and
6 month predictions but not for 1 or 3-month predictions when we consider the MAE score. The
following plots show the combined model vs. the dummy model vs. the true observed values for the
retro cast period for 12, 6, 3 and 1 month predictions:
Figure 10 displays retrocasts for 1, 3, 6 and 12-month predictions. Retrocasts are multiple historic
predictions made within a time period and shows the true value against these predicted values. From
these graphs, we can look at past performance over time for the forecast models selected by iteratively
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(a) 12 month retrocast

(b) 6 month retrocast

(c) 3 month retrocast

(d) 1 month retrocast

Fig. 10. Retrocasts for 1, 3, 6 and 12 month
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Historic data
since

Lookback
window
(months)

Features Lookahead
(months)

Algorithm MAE

- - count 12 previous 1809
- 24 count 12 rolling 1847
2001 - Little’s Law 12 Little’s Law

Exit Rate
1267*

- - - 12 Combined

model

1572*

- - count 6 previous 1447

- 12 count 6 rolling 1466

2001 12 count +MVUE + Little’s Law 6 GBM 854*

- - - 6 combined

model

1303*

- - count 3 previous 440

- 12 count 3 rolling 575

2001 2 count 3 Exponential

Smoothing

438*

- - - 3 combined

model

478

2017 1 count 1 previous 307

2017 1 count 1 rolling 210

2017 4 count +MVUE + Little’s Law 1 RF 231

- - - 1 combined

model

235

Table 4. 12, 6, 3 and 1 month mean absolute error (MAE) for 24 predictions between January 2019 to January 2021 comparing
diferent cutof dates, lookback periods and feature sets. **=best dummy model MAE, *=models which improve on this
benchmark

pretending we are somewhere in the past and trying to predict the number of CVEs. This retrocast is

useful to see if this approach tends to work over time and to generate accuracy metrics with greater

statistical signiicance.

The igures show that the combined model tends to predict above the previous value score. When

looking at the shorter-term predictions in particular, when there is a sudden increase in the number of

CVEs, the combined model tends to be closer to the true value than the dummy model - for example

in August 2019 (1-month and 3-month), and July 2020 (1 month). We speculate that this is probably

preferable to patch managers who would prefer to be over-resourced than under-resourced.

The combined model requires training tens of models (here we trained 269 to check all lookbacks

and feature sets) per lookahead window, this is not computationally cheap and requires some cost

to implement. A single model still produces conidence intervals which could be used to gauge the

accuracy of a prediction. If a practitioner were only to implement one model to predict 12 months

in advance we would suggest using Little’s Law given it’s low error rate. However, if multiple time

windows and sub-categories of vulnerabilities will also be predicted and only one type of algorithm

used, the Gradient Boosted Machine gave the best overall performance across all data types.
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7.4 Product-specific predictions

Though the total number of CVEs can be used as a weather vane for global vulnerability trends, but
typically individuals will be responsible for a (set of) products. Other subsets of CVEs that may be
interesting are the number of CVEs above a certain CVSS score (since patching goals are often tied
to these scores) or perhaps to compare two vendors or products when considering which to take on.
By deinition, these subsets of CVEs have fewer data points than the global number of CVEs. Moreover,
some products have never had a CVE then suddenly 25 appear because a researcher has turned their
attention to it. This data is not captured by the NVD database, perhaps it could be predicted using
exogenous data streams e.g. market share [O’Donnell 2008] but this is outside the scope of this paper.
There are therefore some products that we exclude outright as being forecastable: those which have
never had a CVE, those with very little data (less than 5 CVEs ever) and those with very volatile and
irregular histories are more diicult to predict too.
Our goal is to create a lexible model selection framework, therefore we do not make any changes to
the code or methodology for product selection. The only diference is that now the features are the
global variables + count features for the speciic product. The MVUE and Little’s law features do not
help for these speciic predictions.
Table 5 reports the mean absolute error for the combined model against the two basic models: previous
value and rolling mean across 24 predictions between January 2019 and January 2021 for 12, 6, 3 and
1-month predictions. The products chosen for comparison are three major operating systems and
the most widely used PDF reader globally. It is interesting to note that at the one-month level, all
products see a large variance in the number of CVEs published with the minimum being at least 7
times the maximum in all cases.
Despite the diversity in volume and variance of volume, the combined model gives the lowest MAE
for most products and lookaheads. One notable case in which it performs poorly is for the Linux
Kernel 12 month prediction for which the MAE is 40% higher than the MAE just using the previous
year’s value. The model performs surprisingly well for some products such as Adobe Acrobat Reader
1 month predictions, which range between 0 and 175. Though the model copes well with the dramatic
rise and fall in CVE volume, it cannot predict a sudden increase in CVEs when there has not been
suicient historic data, see Figure 11.
As a quick irst-pass to distinguish CVE subsets that may be predictable using the combined model,
we used the Augmented Dickey-Fuller test [Dickey 1997], which tests the null hypothesis that a
time series has diferential stationarity. This revealed that around 50 products could beneit from
uncertainty reduction around the number of expected CVEs using the combined model. Future work
could reine and improve on this method further.

7.5 CVSS scores and type predictions

It may also be of interest to further drill into the spread of CVSS scores. For all CVEs, we found
that the number of CVEs with a CVSS score above e.g. 9 or 7 was incredibly stable over time, thus
negating the need for forecasting, though the combined model can still be used here and should
adapt were the volume to change dramatically. The total number of CVSS scores above a certain
threshold may be of interest to insurance and risk analysts, but for individual product owners it may
be more valuable to predict the CVSS above a certain level for a particular product.
In taking a smaller subset, it can be even more challenging as the fewer samples, the higher the
variance. Here we have used Linux vulnerabilities due to the model’s poorer performance above and
have tried to estimate the number of vulnerabilities with a CVSS score above 7. This methodology
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Product Lookahead

Com-
bined
model
MAE

Previous
value
MAE

Rolling
mean
MAE

Min
Observed

Max
Observed

Adobe Acrobat
Reader

12 163 175 172 101 519

Adobe Acrobat
Reader

6 91 75 80 45 320

Adobe Acrobat
Reader

3 63 49 48 14 250

Adobe Acrobat
Reader

1 27 42 35 0 175

Microsoft Windows
10

12 156 173 174 492 570

Microsoft Windows
10

6 84 108 95 232 570

Microsoft Windows
10

3 65 65 71 102 305

Microsoft Windows
10

1 31 19 21 21 200

Mac OSX 12 156 177 161 470 865
Mac OSX 6 83 116 100 143 457
Mac OSX 3 73 84 72 46 321
Mac OSX 1 53 79 52 4 200
Linux Kernel 12 191 129 138 200 389
Linux Kernel 6 68 83 87 84 266
Linux Kernel 3 38 29 36 39 155
Linux Kernel 1 11 13 12 6 87

Table 5. Individual product predictions 1, 3, 6 and 12 month. MAE of combined model, previous value and rolling mean are
compared for 24 predictions between January 2019 to January 2021. Minimum and maximum number of CVEs observed
during a given period are reported as an indication of variance.

is the same as for product forecasting, the data used is simply selected using a diferent iltering
method.
Table ?? shows that in this case, the combined model actually outperforms all others, despite the
wide range of values seen (see Min Observered and Max Observed columns).

8 LIMITATIONS

As mentioned earlier the choice of predictor in the combined model is based on the validation set.
There may in fact be exogenous factors outside the NVD data which would explain signiicant
changes in the vulnerability volume such as structural changes in reporting entities, vendors and/or
the market for vulnerability hunting, which in turn may be due to the increased market share held
by a product [O’Donnell 2008].

Digit. Threat. Res. Pract.



1:26 • Éireann Leveret, Matilda Rhode, and Adam Wedgbury

(a) Acrobat

(b) Tensorflow

Fig. 11. Predicting 1 month of Adobe Acrobat PDF Reader CVEs vs. Tensorflow deep learning library CVEs

Lookahead Combined
Model
MAE

Previous
value
MAE

Rolling
mean
MAE

Min
Observed

Max
Observed

12 34 61 54 89 191
6 22 29 33 41 113
3 16 22 25 18 66
1 4 7 9 0 30

Table 6. Linux Kernel CVEs with a CVSS above 7 volume prediction
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The generalisation of this model could be tested with diferent vulnerability feeds and/or databases,
we hope this paper has given inspiration for future work to do so.

9 CONCLUSION AND FUTURE WORK

Initial correlation analysis of the vulnerabilities indicated that there might be a predictive process
memory limit at the 3-month mark. The MVUE and Little’s Law features both gain value from data
far further back in the process than this three month lookback. This is intuitive as Little’s Law is an
average of arrival and exit rates, and as such even beneits from outliers that take years to process.
Equally, a serial number from 6 months ago could still be the highest published. This extension of
the memory through statistical features enables accurate predictions as far as 12 months ahead. In
other words they have more predictive power than the correlation of previous values.
By adding these diligently crafted statistical features to machine learning models, we have achieved
better accuracy in forecasting the volume of CVEs than previous work. By forecasting the total volume
irst, you can use this number (or prediction interval) as an input to vendor/product CVE volume
forecasts (composition models), and traditional time series forecasting approaches will potentially
yield strong results for as many as 50 products at the time of writing. We have also produced useful
visualisation techniques to verify the accuracy of predictions over time, both in retrocasting to build
the conidence of the forecasts, and in communicating the forecasts to end-users themselves.
It is also worth making a relevant policy statement while concluding this paper. This research must
be done simply because NVD does not publish a forecast themselves. Nor does MITRE, or Microsoft,
or Linux Foundation, or Mozilla, or Google. Perhaps there are reasons these organisations choose not
to publish their upcoming CVE volumes. Though if they did it would signiicantly ease the eforts of
patch management and cyber risk quantiication, but to our knowledge any conscious decision not

to publish such things is undocumented. Disclosure debate would be improved by such discussions,
regardless of the outcome.
Future work could look to build on this approach by validating it with other vulnerability streams,
such as the China NVD [CERT 2021] instead of the US NVD, and there is no reason they could not
publish their own forecast as well.
We have built on the foundations of others who researched in this ield before us, and we thank them
for documenting their testing methodologies. We respected those works and tested our models with
their standards at a minimum. However, we have also extended their time windows and accuracy
signiicantly, and we believe there is much better work to come in the future.
We predict the future of vulnerability forecasting research will continue to improve look ahead
windows, uncertainty reduction, volume forecasts, feature forecasting, and accuracy. As it does so,
it will become an integral part of vulnerability-centric cyber risk quantiication, and allow us to
measure our predictive power. Let the reactionary past of vulnerability management fade, the future
of cyber risk belongs to the predictors and forecasters.
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Model Hyperparameter Possible Values ([min, max])

ARIMA autoregressive [0, 10]
ARIMA diferencing [0, 2]
ARIMA moving average [0, 10]

LSTM hidden neurons [1, 1000]
LSTM depth [1, 3]
LSTM bidirectional True, False
LSTM sequence length [2, time series length]

RF number of estimators [1, 1000]
RF criterion mean squared error, mean absolute error
RF minimum samples split 0.1%, 1%, 10%, 20%, 30%, 40%, 50%, 1 sample
RF minimum samples leaf 0.1%, 1%, 10%, 20%, 30%, 40%, 50%, 1 sample
RF bootstrap True, False

GBM number of estimators [1, 1000]
GBM criterion mean squared error, mean absolute error, Friedman mean squared error
GBM loss least squares, least absolute deviation, Huber loss, quantile loss
GBM minimum samples split [0.1%, 1%, 10%, 20%, 30%, 40%, 50%, 1 sample]
GBM minimum samples leaf [0.1%, 1%, 10%, 20%, 30%, 40%, 50%, 1 sample]
GBM subsample 50%, 60%, 70%, 80%, 90%, 100%
GBM learning rate [0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5]

Table 7. Hyperparameter values used for random search, see the following python libraries for details: ARIMA: the StatsModels
[Seabold and Perktold 2010], LSTM: Keras [Chollet et al. 2015], RF and GBM: Scikit-learn [Pedregosa et al. 2011]
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